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Mathematical Formulae

1. ALGEBRA
Quadratic Equation

For the equation ax® + bx+¢=0,

—bt\/b*z—tiac

2a

Binomial expansion
(@+b)* = a"+ (7)a b+ () a2 b2 + o+ (1) a7 + 4 b7,

n] n! _nan=1D..(n-r+1)

where 7 is a positive integer and = =
. (n=r)ir! rl

¥

2. TRIGONOMETRY
Identities
sin® A+cos’ 4=1
sec’ A=1+tan’ 4
cosec A=1+cot’ A

sin(A + B) =sin Acos B + cos Asin B

cos(A + B) = cosAcosB F sindsinB
tanA + tanB
tan(A +B) =

1 ¥F tanA tanB

sin2A4 =2sinAcos A
cos2A4=cos* A—sin’ A=2cos’ A—1=1-2sin> 4

tan24 = —Zt%
l-tan” 4
Formulae for AABC
a b c

sind sinB sinC
a’ =b" +¢* =2bccos A

A= “l‘bCSin A
2




X+

1 Giventhat V64* = 312;15 , find the value of x. [3]

1+sinx {2]

2 Prove the identity (tan x + secx)? = ——.
1-sinx



3

2x*
1-3x

. . . d
(i) Find an expression for ﬁ.

The equation of a curve is y =

(2]

(i)  Given that x is changing at a constant rate of 0.05 units per second, find the rate

of change of y when x = 3. (2]



—4x3+11x%-16x+9

promrr e partial fractions. (7]

4 Express



2
(i) Express (ﬁiﬁ) in the form a + bV/15, where a and b are integers. [4]

(i) Giventhaty = 2x* — px + 8 and that y < 0 only when (V3 — 1) < x <k,
find the exact value of p and of k. [5]



6 (i) Sketch the graph of y = 2vx3 forx = 0. [1]

(ii)) Find the coordinates of the pointg of intersection of the curve y = 2vx3 and

the liney = —2x + 4. [5]



7 Solve each of the following equations.

(i 10'&sx* =35 [3]

(i) log(6 —x) —log,(x —2) =3 —log,(2x + 1) [4]



8 A curve is such that j—i = 2x2 —x — 10. The curve has a maximum y value of 13. Find

the equation of the curve. [6]



9  Itisgiventhat y=—=-In(3x —2) —2x+3 for x > 2.
9 3

()  Determine, with appropriate workings, whether y is increasing or decreasing. [5]

(i) Find the range of values of x for which g is increasing,. [2]

10



10

Solutions to this question by accurate drawing will not be accepted.

The diagram shows a right-angled triangle ABC such that ZABC = 90°. Given that the
coordinates of 4, B and C are (—5,9), (2, h) and (k, —1) respectively where & and k are
integers. The line y = 3x + 2 meets AC at P such that 5AP = 2AC.

€k —1)

B(2,h
Find 2.5
(i) the coordinates of P, (2]
(i) the value of k and of 4, [4]
(iii) the area of the triangle ABC. [2]

11



11 () Find the range of values of x for which |[2x — 3| > 7. [3]

(ii) Given that the coordinates of the maximum point of the graph

y=albx — 3|+ cis G, 5), where a, b and c are integers. The y-intercept of
the graph is —4.
(a) Find the value of a, of b and of c. [3]

(b) Find the coordinates of the x-i_ntercepts. [4]

12



12 Itis given that y = 2cos?x — 4sin®x for 0 < x < 2.

(i) Express y in the form a + b cos 2x, where a and b are integers. [3]
(ii) Hence, state the period and amplitude ot y. [2]
(iii) Sketch the graph of y = 2cos?x — 4sin?x for 0 < x < 2m. [3]

(iv) On the same axes, draw a suitable straight line to find the number of solutions

that satisfy the equation x = 2w — 3ncos2x for 0 < x < 2m. [3]

--- End of Paper ---
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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the equation ax? + bx + ¢ = 0,
—-b +Vb? —4ac
X =
2a

Binomial expansion

@+b)"=a"+ (]

1

_ n! A= 1) s n—=r+1)
T (n-m)r 7!

i T % i
where #n is a positive intege (r)
and

2. TRIGONOMETRY
Identities
sin?4 + cos?4 = 1
sec’A = 1 + tan?4
cosec?4 = 1 + cot?4

sin(A + B) =sinAcosB + cosAsinB
cos(A+ B) =cosAcosB FsinAsinB
tanA +tanB
tan(A+B) = ——mMm—
(4% B) 1+tanAtanB
sin24 = 2sinAcos A
c0s2A = cos? A —sin?A =2cos?A—1=1—2sin%4A
2tanA

tan24 = —————
1—tan24

Formulae for AABC

a b c
sind  sinB _ sinC

a? =b2+c¢?2—2bccosA

1
A= —bcsinA
5 besin

)a“‘lb + (2) a2p? + .-+ C}) a® b’ + -

+b™,




(a)

(b)

State the values between which each of the following must lie:

(i) the principal value of tan™* x,

(ii) the principal value of cos™ x.

Without using a calculator, find the exact value of tan 105°.

[1]

(1]

[3]



; d% 36 . . ' ;
2. A curve is such that T = G The gradient of the tangent at the point (=1, 3)

is ; Find the equation of the curve. (5]



3.  The roots of the equation x2 + mx + n = 0 are a and f, where « § > 0.

Given that a? — B2 = 13, @ — B = —1 and 2% = 72, find the value of m and of n. (7]



4. Giventhat y = (k — 2)x? — kx + k — x — 2, find the range of values of k for which

v is always positive. [7]



An object is heated until it reaches a temperature of T, °C. It is then allowed to cool. Its

temperature, T °C, when it has been cooled for n minutes, is given by the equation

3
T=33+12e +.
(i) Find the value of Tj. [1]

(ii) Find the value of n when 7'= 37 °C. [1]

(iii) Find the value of s at which the rate of decrease of temperature is

0.67 °C /minute.
/ 2]

(iv) Explain why the temperature of the object is always greater than 33 °C. [1]

~

™) - -
Sketch the graph of T = 33 + 12e 4. 2]



6. The polynomial f(x) = ax? + x? + bx + 6 has a factor of (x + 2) and leaves a remainder
of 18 when divided by (x — 1).
(i) Find the value of @ and of A. [4]



(i) Factorise f(x) = ax3 + x* 4+ bx + 6 completely. [2]

(iii) Hence, using the values of a and b found in (i), solve the equation

ay -1+ (@ —-1)2%+b(y—1)+6=0. [2]



7.

10

(i)  Differentiate sin®2x with respect to x.

(ii)  Hence evaluate the following

T

() fs sin?2xcos2x dx
0

(b) f cos32x dx

[2]

[4]
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8. In the expansion of (3 + 5x)", the value obtained when coefficient of x? is divided by

coefficient of x3 is 0.3.

(i) Find the value of ». [4]



12

(i)  Hence, find the term independent of x in the expansion of (3 + 5x)™ (1 — E)2. (5]
X



13

9. Inthe diagram below, BE is perpendicular to AD.
Given that ZBAC = 6, where 8 is an acute angle, 4B =15 cm and DE = 12 cm.

B

o Mﬂju’
(i) Express the AD in the form R cos (8 — a), where R is positive and a is acute.  [4]



(i)

(iii)

14

Find the value of @ for which 4D = 16.5 c¢m.

Given that AD is the diameter, find the length of 4D and the corresponding

value of 4.

(3]

[3]
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10. The table shows experimental values of two variables x and y. The two variables are related

by the equation bﬁ = ab + ax?, where a and b are non-zero constants. One of the y values

have been misprinted.
X 1 1.5 2 2.5 3 3.5
y 523 6.98 7.88 143 20.9 30.3

(i) Usinga scale of 1 cm to 1 unit on the x? axis and 2 cm to 1 unit on the Jy axis,

plot x? against \/y and draw a straight line graph on the grid provided. 3]
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(i)  Use your graph to estimate the value of @ and of b. [4]

(iii) Using your graph, identify the abnormal reading and estimate its correct value.  [3]




17

11 (a) Find the exact coordinates of the stationary points of the curve y = 5x%e %

and determine the nature of the stationary points. (6]



18

x34

xzz. Find the value of &k for which the line

(b) A curve has the equation y =

27 i
s k is a normal to the curve. [6]



19

12. A circle, C;, has equation 2x? — 3x + 2y? —%(43} -3)=0.

(i)  Find the coordinates of the centre and the radius of C;. [3]

(i) Show your working clearly whether the point P (=1,2) lies inside or

outside C;. (2]
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(iii)  Find the equation of another circle, C,, which is a reflection of C; in the line

y—x—-3=0, [7]

- End of Paper -
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Additional Mathematics Paper 1
1 ffam — 85 4| -4x*+11x*-16249 _A B | Cx4D
4% = 331*23 @x-1(243) | x| 2x-1 . 2243
3x+3
2% = (zs-mx) 3 2z
2 —4x3 +11x%* - 16x +9
2% = —:io-m = A(2x = 1)(x* + 3) + Bx(x* + 3) + x(Cx + D)(2x = 1)

6x = 6x + 6 — (10 — 20x)
20x=4

=3
x=c or0.2

(tanx + secx)*
_ [sinx 132
-t
- (siuxﬂ)z
cosx
_ (sinx+ 1)2
cos?x
_ (sinx+ 1)2

1-sin? x
(sinx +1)2

- (1-sinx)(1+sinx)
_ l4sinx

 1-sinx

Letx =0,

l..etx=z.

1

Compare x3;

Letx =1,

.

+

-4=2A+B+2C
€=0
D=4

4

2x— x243

3i

T
1_

dy _ 4x(1-3x)-2x%(=3)
dx (1-3x)?
4x-12x%+6x?

=Tt

_ 4x—-6x?

=

_ 2x(2-3x)

3ii

-3
£ = .05 wnits, x = 3
dy = dy ., dx
3?;5(2 %)
e X005

B e

640

or —0.0328 units/s

%Xk +2V3-2)

-z(zJ‘+2)+2J‘ 2

=6v3+2

6i

6ii

Tii

y y=2\[x—3

ay 5,

x=1=0
x-—l

= 1@1(3“\*
@?

x = 588
=3.08

log(6 —x) —

6=x
log, Ex_ 2; X (2x+1) =
(6=0)@x+1) _ o3
(x-2)

12x+6—2x2 —x =8(x - 2)
2x*-3x-22=0
3+ /(=3)2-a(2)(-22)

2(2)

(4.15) or

r=
3+\| 185

2x2—x—-10=0
(x+2)2x-5)=0
x==2o0r25
L = gx—1

dxz
=2 - 4(25)-1=9>0, minywhenx=2.5

dxi

x y—4(—2)—1=—9<0. max y when x = -2

dx?

y= f2x2-—x—10dx
2x? x*

—T—?—I(Jx-i-c
13 zt-z)’_ﬂ, 10(=2) +¢

Compare x% /45 b
bEO
4x3 — 4x% + 16=(x— 1)(—1

loga(x—2)=3—
log,(6 — x) — logz(x — 2) + logz(2x + 1) =3

9i

=T3@x-2)

\Singe!x—ZD-D 2

3(3: 2)
-2<0

—_— 0,
dy

wx<oor 3(3:—2) ,
Therefore y is decreasing forx > 3.

d?y 1 -
P 5(1—1)(31 -2)"%(3)

“Br-2)2

(3x G-

Therefore x > ;

{ —2.65)(reject)

10i

10ii

y=-1+3(3) =5
5=3x+2
x=1

P(1,5)

k=252(5) -5 =10

(fs_—hz) (#-h) .l
(9—-h)(1+h) =-56
h*—-8h—65=10

h=13(rej)or—5




06 |, _1}-5 2 10 =3 11iib | 0 = =3[4x — 3|+ 5
“2l9 -5 -1 9 I4x—3|=g
=70 5
4x—-3=7 or4x—-3=-:
_7 _1
x—; orx_—a
7 1
(3.-0)ma(5.0)
11i (2x —3)?> 49 12i |y = 2cos?x — 4(1 — cos?x)
x2—-3x—-10>0 y = 6cos’x — 4
x=5)xx+2)>0 y =3(cos2x +1) — 4
x<-=2o0rx>5 = 3e0s2x =1
OR
2x—=3>7 or 2x—3< -7
x>5 orx<-2
1liia |y =al4x—3|+5 12ii | Per
—4 =al|-3|+5 A
a=-3, b=4,
12iii v 4
2 — —— —
O HN
0
Q% :
-4 —— -
06
Za &2
12i = 3cos2x — 1
N i— ZCESBCOSZx\/ @(\G\N
T \%\
3cos2x =2 ——
T ox
3cos2x—1=1—-—
T

X
y=1-=

T
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FE

=90 < tan"'x <90 or [dy 9 1
| n i3 lax -y 2 .
|-;<tan“xc—— . :
| 2 2 v=[901-2x)7¢ - dx |
y_' a 1 i
alt | e ) e
10 < cosix <180 or A TTTS) 2x+d
0<cos™'x < Subx =-~1y=13,
1 3._ 9
| - 2(3)"'7
‘ d=1
; 9 1
[ I g
b | tan 105° o a+fi=-m
| = = tan(60 + 45%) aff =n
! __:_ufniu'ﬂnmis‘ (e + «— = 2. f§2
[ i tane0’tanss® 2K ﬂ} “ B
| it e (a+F)(~1)=13
| ~1=v3 T 1443 =13
| Vi3t
! 1-3
I =2(\=§+2!
I _J
| '——ﬁ 2
2 %y 36
Vdet ~ {1z
|
| -LI;“IJ()U—ZX) ddx
i
L3601 -2x)*
i (-2)(-2)
| G
A=z °
Subxr=-1,2=1,
I QO
| 1
| = 32 \@*

|[“4 (¥

(B2 dac< U
l|w+nﬁ 4k—-Dk-2<0
D k2426 +1— 4(K2
i—3k2+18k-—15(0
l -k +6k—-5<0
i{kSKL\))G
|k~<10r5<k
(k=2>=0

(k=2

4k +4)<0

L Answer: 2

6i fle) =0

]—M—!bnu:u

| 8a + 2b =10
da+b=5-—-——{1}
f(1) =18

“Taxb=11-— 2}

o k- - (k+ Dx+ (k-2) —== 7 a0

T7ia

T ‘ —lam .!xlu- ﬂ“i"[‘mﬁ

Q - —1+2)()’—1+3)(2()-
) Hi=0

—(y+ Dy - 4)(2y - 1)=0
y= -1,405

i Fﬁ(ﬂn!zﬂ = 3sin?2x(2c0s2x)

d 5
—(sin*2x) = bsin*2xcos2x
dx

&
I sin®2xcos2x dx
o
o
1red
i1

= —J:. a‘{Siﬂ‘Zr}d.‘(

l

|
l

L

i._?i_i-t; Tll-

e

cos 2x dx

=

n
l = J3 cosi2yeos2x dx
|
= jaz{l ~ st 2xcos2adx

I .
'! =J’|}Cu.s2x dx - Ej[;'hsm‘?xms'.’,x dx
. it
! 3
= [ sinix — E-sm 2x18
| 0

=(1.295 (3sf)

(a)m"‘?( 0 =

nn-tlyn-2(25x%) 3

(

L S SR
i -2 3n-3(125%%)

3 _ 3
|52 10
| 73

-~ - Y
30 = 5{n— 2}

|6=n-2

ln=8
VTarsora- -
'|: — @B+50%1 -1+
i; x term : (1) (3)7(5x)

| = R7480 x
\ x4 term: (g)(3)“(5x)‘
| = 510300 °

l Tenm independent of X
| 38(1) 4 (87480) + 4 (310300)

= 1647841

nin-1){n-2) 3,1_{(13‘)\, )




_m

|
|

angle DEC — 8 (angles
segiment)

15¢cos0 + 12 sing

[ = V152 + 1272 cos(6 —
- 12

tan (E)J

= 3T cos( 8 - 38.79)
=19.2 cos(0 — 38.7°)

Basic angle - 30.80°
0 = -30.80° 69.46028°
=7.9% 69.5°

Full mark was given
even though students

l missed out 7.9%,

= V369 cos( 0 — 38.65981°)

165 = 3VHTcos(d - 38.65981)
cos(6 - 38.65981) = 0.85896

i -1 Scos{ 0 —30.65901) <1
|: Max value = 3v41

| cos( 0 - 38.65981) = 1

|6~ 3865981 = 0

|0 =38.7°

4 fy =281

(3.5.0)

Accept fy -3.05-3.15
Acceply =9.3025 - 10.5625

| Abiurinal icadiing when 07 —

] Correct J} should be 3,15, y = 9.92

b=T7.0388
i =7.06

y = 5x%e ™3
dy

= 5xe ¥ (2 - 3x)

Al stationary poin Do

L = 10xe™* + Sx%e~¥(-3)

(b |

[ 120

N

(0,0} isa n‘(ﬁ*m c;ini
1 ___Zi 057 | 067 | 077 |
51 nof |+ | 0 -
dy. |
_dx_---- R—— ! — -
sketch of | i
tangent | |
T30 <. = 7
t?‘;:‘- ) is @ maximum point

| Distance of P from centre

207

Xy~ 15—~y +075=0
Centre = (2 ,21) = (0.75,05)
Radius = V0.75¢ ¥ 0.52 — 0.75

=0.25

=J(0.75 + 1)2 4 (0.5 — 2)
=2.3049 > radius

Hence, P lies outside the circle.

23t - 3x 4 Zy"'—i(-ly—;%):[.l

ly=v+3
X

| Gradient = | f
| Perpendicular gradient = -1 :
| Eguation of the e juming e two

| centres:
|

| Let centre of Cz be (x, ),

y-05=—(x-075) |
el .25 11
YEXFFsissanid)
Sub (2) o (1),
x+3=-x+125

r

7
x=-=
8

oo Xt 9
3 mto (2),

X+075  y+05
2 "2

7ol
[";.Z;)——[
= —2.5

. |
y=3=

)

Equation of Ca:
) 52 4y —13 ;)f 1 |
(;+2.)+U_: = - .
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